skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gasparini, Blaž"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Tropical cirrus clouds play a critical role in the climate system and are a major source of uncertainty in our understanding of global warming. Tropical cirrus are affected by processes spanning a wide range of spatial and temporal scales, from ice microphysics on cloud scales to mesoscale convective organization and planetary wave dynamics. This complexity makes tropical cirrus clouds notoriously difficult to model and has left many important questions stubbornly unanswered. At the same time, their multi-scale nature makes them well positioned to benefit from the rise of global, high-resolution simulations of Earth's atmosphere and a growing abundance of remotely sensed and in situ observations. Rapid progress requires coordinated efforts to take advantage of these modern computational and observational abilities. In this Opinion, we review recent progress in cirrus studies, highlight important questions that remain unanswered, and discuss promising paths forward. We find that significant progress has been made in understanding the life cycle of convectively generated ``anvil cirrus and how their macrophysical properties respond to large-scale controls. On the other hand, much work remains to be done to understand how small-scale anvil processes and the climatological anvil radiative effect may respond to global warming. Thin, in situ-formed cirrus are now known to be closely tied to the thermal structure and humidity of the tropical tropopause layer (TTL), but uncertainty at the microphysical scale remains a significant barrier to understanding how these clouds regulate the TTL moisture and temperature budgets, as well as the mixing ratio of water vapor entering the stratosphere. Model representation of ice-nucleating particles, water vapor supersaturation, and ice depositional growth continue to pose great challenges to cirrus modeling. We believe that major advances in the understanding of tropical cirrus can be made through a combination of cross-tool synthesis and cross-scale studies conducted by cross-disciplinary research teams. 
    more » « less
  2. Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud-top cooling and cloud-base heating dipole cannot compensate for the effect of diurnal shortwave radiative heating. Radiative–convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts. Significance Statement Deep convective activity and rainfall peak at night over the tropical oceans. However, anvil clouds that originate from the tops of deep convective clouds reach their largest extent in the afternoon hours. We study the underlying physical mechanisms that lead to this discrepancy by simulating the evolution of anvil clouds with a high-resolution model. We find that the absorption of sunlight by ice crystals lofts and spreads the daytime anvil clouds over a larger area, increasing their lifetime, changing their properties, and thus influencing their impact on climate. Our findings show that it is important not only to simulate the correct onset of deep convection but also to correctly represent anvil cloud evolution for skillful simulations of the tropical energy balance. 
    more » « less
  3. Abstract We explore the importance of the life cycle of detrained tropical anvil clouds in producing a weak net cloud radiative effect (NCRE) by tropical convective systems. We simulate a horizontally homogeneous elevated ice cloud in a 2‐D framework using the System for Atmospheric Modeling cloud‐resolving model. The initially thick cloud produces a negative NCRE, which is later canceled by a positive NCRE as the cloud thins and rises. Turning off interactive cloud radiation reveals that cloud radiative heating and in‐cloud convection are fundamental in driving net radiative neutrality. In‐cloud convection acts to thin initially thick anvil clouds and loft and maintain thin cirrus. The maintenance of anvil clouds is tied to the recycling of water vapor and cloud ice through sublimation, nucleation, and deposition as air parcels circulate vertically within the cloud layer. Without interactive radiation, the cloud sediments and sublimates away, producing a large negative NCRE. The specification of cloud microphysics substantially influences the cloud's behavior and life cycle , but the tendency of the life cycle to produce compensating cloud radiative effects is robust to substantial changes in the microphysics. Our study shows that small‐scale processes within upper level ice clouds likely have a strong influence on the NCRE associated with tropical convective cloud systems. 
    more » « less